

Multilingual Evaluation of Long Context Retrieval and Reasoning

Ameeta Agrawal, Andy Dang, Sina Bagheri Nezhad, Rhitabrat Pokharel, Russell Scheinberg

Portland State University, USA

::- 4th Multilingual Representation Learning (MRL) Workshop, Nov. 16, 2024 -::

How well do models use long contexts across different languages?

[outline]

- Multilingual retrieval and reasoning task in long contexts (64k tokens)
- mLongRR: a new dataset for needle-in-a-haystack analysis across 5 languages

[languages]

Language	ISO 639-3 Code	Resource Level	Language Family	Script
English	eng	Level 5	Indo-European	Latin
Vietnamese	vie	Level 4	Austro-Asiatic	Latin
Indonesian	ind	Level 3	Austronesian	Latin
Swahili	swa	Level 2	Niger-Congo	Latin
Somali	som	Level 1	Afro-Asiatic	Latin


```
Retrieval Task, single needle (n=1)
"The special {city} number is: {number}."
```

Reasoning Task, multiple needles (n≥2)
"What is the larger/largest magic number?"
"Which city has the larger magic number?"

[creating mLongRR dataset]

BBC news articles in multiple languages

Naturally occurring text

Recent data

[prompt]

You are a helpful AI bot that answers questions for a user. Keep your response short and direct. The following is a set of context and a question that will relate to the context.

{context}

#QUESTION

What is the special magic number? Don't give information outside the document or repeat your findings. If the information is not available in the context respond UNANSWERABLE.

[experiments]

- \rightarrow 6 LLMs: GPT-4, GPT-4o, Gemini-1.5, Claude-3, Yarn-7b, Llama-3
- \rightarrow 5 context lengths: 2k, 8k, 16k, 32k, 64k
- \rightarrow 5 needle depths: 0%, 25%, 50%, 75%, 100%

Performance drops significantly as task complexity increases (as few as n=3!)

Overall Gemini-1.5 pro yields best performance, followed by GPT-40

Performance drops with longer contexts, especially for needles in the middle

			eng					vie			-		ind					swa			som			1			
0	83	83	50	100	100	67	67	50	50	50	83	50	50	40	50	33	32	33	20	50	33	33	17	20	25		
25	100	83	33	60	50	83	67	50	25	0	83	50	33	20	0	67	50	0	0	0	0	0	0	0	ð	Ļ	
50	100	100	50	80	75	83	50	50	75	0	100	33	0	0	0	67	17	0	0	0	0	17	0	0	0	-need	
75	100	67	33	80	50	83	67	17	50	25	67	50	17	0	0	67	17	33	0	0	17	0	0	0	0	e	
100	100	100	67	60	75	83	50	67	75	100	50	33	50	40	50	50	50	17	40	0	33	17	0	0	25		
	-	_		_					_	_	_								_				-			H	
0	80	80	60	100	75	100	60	80	100	75	80	80	60	25	50	60	60	0	25	0	60	40	20	25	25		
g 25	100	80	40	50	25	100	80	60	75	50	60	40	40	25	25	80	40	0	0	0	20	20	0	0	0	2-0	Accuracy
50	100	80	40	75	50	100	80	40	100	75	60	80	60	25	0	80	20	0	0	0	0	0	0	0	0	bedle	50 25 0
75	60	100	20	25	25	80	100	40	100	75	60	80	60	25	0	80	60	20	0	25	20	0	0	0	0		
		\sim							_					_												\mathbb{H}	
0	30	0	0	100	50	80	80	60	50	50	60	20	40	50	25	40	20	0	0	0	20	0	0	0	0		
25	60	60	0	0	50	60	60	20	25	50	20	20	0	0	0	40	0	0	0	0	0	20	0	0	0	3-ne	
50	100	60	20	0	25	80	80	20	50	0	40	40	20	0	0	20	0	0	0	0	0	20	0	0	0	edle	
75	81	40	0	0	50	80	40	60	25	25	40	40	0	25	25	40	0	0	0	0	20	0	0	0	0		
3	2k	8k	168	32k	64k	2k	8k	16k	32k	64k	2k	8k Con	16k text Le	32k ength	64k	2k	8k	16k	32k	64k	2k	8k	16k	32k	64k		

Performance drops as we get to lower resource languages

	GPT-4	Gemini-1.5	Claude-3	YaRN-7b	Llama-3	GPT-40
English	1.13	1.15	1.15	1.32	1.13	1.11
Vietnamese	2.08	1.20	2.89	2.75	1.27	1.29
Indonesian	1.92	1.40	2.33	2.48	1.91	1.55
Swahili	2.23	1.85	2.36	2.48	2.21	1.68
Somali	2.37	2.09	2.47	2.70	2.36	1.79
Average	1.94	1.53	2.24	2.34	1.77	1.48
		Toke	enization rate	es		

Lower tokenization rate results in better performance across languages and models

[conclusion]

- Performance drops with
- Longer contexts
- Needles in the middle
- Higher task complexity (English drops from ~100% to ~50% in n=3)
- Lower-resource languages
- Lower tokenization rates correlate with better performance across languages and models

[thank you]

ameeta@pdx.edu

